Notice

Medicine is an ever-changing science. As new research and clinical experience broaden our knowledge, changes in treatment and drug therapy are required. The authors and the publisher of this work have checked with sources believed to be reliable in their efforts to provide information that is complete and generally in accord with the standards accepted at the time of publication. However, in view of the possibility of human error or changes in medical sciences, neither the authors nor the publisher nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they disclaim all responsibility for any errors or omissions or for the results obtained from use of the information contained in this work. Readers are encouraged to confirm the information contained herein with other sources. For example and in particular, readers are advised to check the product information sheet included in the package of each drug they plan to administer to be certain that the information contained in this work is accurate and that changes have not been made in the recommended dose or in the contraindications for administration. This recommendation is of particular importance in connection with new or infrequently used drugs.
About the Authors

Dr. Leon Shargel has over 30 years experience in both academia and the pharmaceutical industry. He has been a member or chair of numerous national committees involved in state formulary issues, biopharmaceutics and bioequivalence issues, institutional review boards, and a member of the USP Biopharmaceutics Expert Committee. Dr. Shargel received a BS in pharmacy from the University of Maryland and a PhD in pharmacology from the George Washington University Medical Center. He is a registered pharmacist and has over 150 publications including several leading textbooks in pharmacy. He is a member of various professional societies including the American Association Pharmaceutical Scientists (AAPS), American Pharmacists Association (APhA), and the American Society for Pharmacology and Experimental Therapeutics (ASPET).

Dr. Susanna Wu-Pong is Associate Professor and Director of the Pharmaceutical Sciences Graduate Program at Virginia Commonwealth University (VCU). She has been a faculty member at VCU School of Pharmacy for 18 years. She received her BS in pharmacy from the University of Texas at Austin and her PhD from the University of California at San Francisco (USCF), and postdoctoral training in metabolism and dermatology also at UCSF. She is the recipient of the AAPS Young Investigator Award and the AACP Grant for New Investigators. She has been an NIH and NSF Study Section Reviewer, and a reviewer for numerous scientific journals. She has published over 60 scientific papers, books, chapters, and abstracts, including *Biopharmaceutical Drug Design and Development, Vol. 2*. In addition, Dr. Wu-Pong is a 2005 graduate of the Grace E. Harris Leadership Institute and a fellow of the 2010–11 AACP Academic Fellow Leadership Program.

Dr. Andrew Yu has over 30 years of experience in academia, government, and the pharmaceutical industry. Dr. Yu received a BS in pharmacy from Albany College of Pharmacy and a PhD in pharmacokinetics from the University of Connecticut. He is a registered pharmacist and has over 30 publications and a patent in novel drug delivery. He had lectured internationally on pharmaceutics and drug delivery.
Contents

Preface xiii
Glossary xv

1. Introduction to Biopharmaceutics and Pharmacokinetics 1
 - Drug Product Performance 1
 - Biopharmaceutics 1
 - Pharmacokinetics 3
 - Clinical Pharmacokinetics 4
 - Practical Focus 4
 - Pharmacodynamics 5
 - Drug Exposure and Drug Response 5
 - Toxicokinetics and Clinical Toxicology 5
 - Measurement of Drug Concentrations 6
 - Basic Pharmacokinetics and Pharmacokinetic Models 10
 - Chapter Summary 15
 - Learning Questions 17
 - References 17
 - Bibliography 18

2. Mathematical Fundamentals in Pharmacokinetics 19
 - Math Self-Exam 19
 - Estimation and the Use of Calculators and Computers 20
 - Practice Problems 22
 - Calculus 24
 - Graphs 26
 - Units in Pharmacokinetics 31
 - Measurement and Use of Significant Figures 32
 - Units for Expressing Blood Concentrations 33
 - Statistics 33
 - Practical Focus 34
 - Rates and Orders of Reactions 35
 - Chapter Summary 40
 - Learning Questions 40
 - References 42
 - Bibliography 42

3. One-Compartment Open Model: Intravenous Bolus Administration 43
 - Elimination Rate Constant 44
 - Apparent Volume of Distribution 45
 - Clearance 48
 - Practical Focus 50
 - Clinical Application 53
 - Calculation of k from Urinary Excretion Data 53
 - Practice Problem 54
 - Clinical Application 56
 - Chapter Summary 57
 - Learning Questions 57
 - Reference 59
 - Bibliography 59

 - Two-Compartment Open Model 63
 - Clinical Application 68
 - Practice Problem 68
 - Practical Focus 69
 - Three-Compartment Open Model 77
 - Determination of Compartment Models 79
 - Practical Application 84
 - Chapter Summary 86
 - Learning Questions 87
 - References 88
 - Bibliography 89

5. Intravenous Infusion 91
 - One-Compartment Model Drugs 91
 - Infusion Method for Calculating Patient Elimination Half-Life 95
CONTENTS

Loading Dose Plus IV Infusion—One-Compartment Model 96
Practice Problems 98
Estimation of Drug Clearance and V_d from Infusion Data 100
Intravenous Infusion of Two-Compartment Model Drugs 100
Practical Focus 102
Chapter Summary 104
Learning Questions 104
Reference 106
Bibliography 106

6. Drug Elimination and Clearance 107
Drug Elimination 107
The Kidney 108
Renal Drug Excretion 111
Clinical Application 114
Practice Problems 114
Drug Clearance 114
Clearance Models 116
Renal Clearance 118
Determination of Renal Clearance 121
Relationship of Clearance to Elimination Half-Life and Volume of Distribution 125
Chapter Summary 127
Learning Questions 127
References 129
Bibliography 129

7. Pharmacokinetics of Oral Absorption 131
Pharmacokinetics of Drug Absorption 131
Significance of Absorption Rate Constants 133
Zero-Order Absorption Model 133
Clinical Application—Transdermal Drug Delivery 134
First-Order Absorption Model 134
Practice Problem 142
Chapter Summary 149
Learning Questions 149
References 150
Bibliography 151

8. Multiple-Dosage Regimens 153
Drug Accumulation 153
Clinical Example 157
Repetitive Intravenous Injections 158
Intermittent Intravenous Infusion 163
Estimation of k and V_d of Aminoglycosides in Clinical Situations 165
Multiple-Oral-Dose Regimen 166
Loading Dose 168
Dosage Regimen Schedules 169
Practice Problems 171
Chapter Summary 173
Learning Questions 174
References 175
Bibliography 175

9. Nonlinear Pharmacokinetics 177
Saturable Enzymatic Elimination Processes 179
Practice Problem 180
Drug Elimination by Capacity-Limited Pharmacokinetics: One-Compartment Model, IV Bolus Injection 181
Clinical Focus 191
Drugs Distributed as One-Compartment Model and Eliminated by Nonlinear Pharmacokinetics 191
Chronopharmacokinetics and Time-Dependent Pharmacokinetics 193
Bioavailability of Drugs that Follow Nonlinear Pharmacokinetics 196
Nonlinear Pharmacokinetics Due to Drug–Protein Binding 196
Potential Reasons for Unsuspected Nonlinearity 200
Chapter Summary 200
Learning Questions 200
References 202
Bibliography 203

10. Physiologic Drug Distribution and Protein Binding 205
Physiologic Factors of Distribution 205
Clinical Focus 213
Apparent Volume Distribution 213
Practice Problem 216
Protein Binding of Drugs 219
Clinical Examples 221
Effect of Protein Binding on the Apparent Volume of Distribution 222
Relationship of Plasma Drug–Protein Binding to Distribution and Elimination 227
Determinants of Protein Binding 231
Kinetics of Protein Binding 232
Practical Focus 233
Determination of Binding Constants and Binding Sites by Graphic Methods 233
Clinical Significance of Drug–Protein Binding 236
Modeling Drug Distribution 247
Chapter Summary 248
Learning Questions 249
References 250
Bibliography 251
11. Drug Elimination and Hepatic Clearance 253
- Route of Drug Administration and Extrahepatic Drug Metabolism 253
- Practical Focus 255
- Hepatic Clearance 255
- Enzyme Kinetics 257
- Clinical Example 261
- Practice Problem 263
- Anatomy and Physiology of the Liver 265
- Hepatic Enzymes Involved in the Biotransformation of Drugs 267
- Drug Biotransformation Reactions 269
- Pathways of Drug Biotransformation 270
- First-Pass Effects 282
- Hepatic Clearance of a Protein-Bound Drug: Restrictive and Nonrestrictive Clearance from Binding 287
- Effect of Changing Intrinsic Clearance and/or Blood Flow on Hepatic Extraction and Elimination Half-Life after IV and Oral Dosing 288
- Biliary Excretion of Drugs 289
- Role of Transporters in Hepatic Clearance and Bioavailability 292
- Chapter Summary 293
- Learning Questions 294
- References 296
- Bibliography 298

12. Pharmacogenetics 301
- Polymorphism 303
- Pharmacogenomics 306
- Adverse Drug Reactions Attributed to Genetic Differences 308
- Genetic Polymorphism in Drug Metabolism: Cytochrome P-450 Isozymes 310
- Genetic Polymorphism in Drug Transport: MDR1 (P-Glycoprotein) and Multidrug Resistance 311
- Genetic Polymorphism in Drug Targets 312
- Relationship of Pharmacokinetics/Pharmacodynamics and Pharmacogenetics/Pharmacogenomics 313
- Clinical Example 315
- Summary 316
- Glossary 316
- Abbreviations 317
- References 317
- Bibliography 318

13. Physiologic Factors Related to Drug Absorption 321
- Drug Absorption and Design of a Drug Product 321
- Route of Drug Administration 321
- Nature of Cell Membranes 324
- Passage of Drugs Across Cell Membranes 326
- Oral Drug Absorption During Drug Product Development 333
- Drug Interactions in the Gastrointestinal Tract 334
- Oral Drug Absorption 336
- Methods for Studying Factors that Affect Drug Absorption 348
- Clinical Examples 351
- Effect of Disease States on Drug Absorption 351
- Miscellaneous Routes of Drug Administration 353
- Chapter Summary 355
- Learning Questions 356
- References 357
- Bibliography 359

14. Biopharmaceutic Considerations in Drug Product Design and In Vitro Drug Product Performance 361
- Biopharmaceutic Factors Affecting Drug Bioavailability 361
- Rate-Limiting Steps in Drug Absorption 363
- Physicochemical Nature of the Drug 366
- Formulation Factors Affecting Drug Product Performance 368
- Drug Product Performance, In Vitro: Dissolution and Drug Release Testing 370
- Compendial Methods of Dissolution 374
- Alternative Methods of Dissolution Testing 376
- Meeting Dissolution Requirements 378
- Problems of Variable Control in Dissolution Testing 379
- Performance of Drug Products: In Vitro–In Vivo Correlation 380
- Dissolution Profile Comparisons 386
- Drug Product Stability 386
- Considerations in the Design of a Drug Product 387
- Drug Product Considerations 389
- Clinical Example 394
- Chapter Summary 398
- Learning Questions 399
- References 399
- Bibliography 401
15. Drug Product Performance,
In Vivo: Bioavailability and Bioequivalence 403

- Drug Product Performance 403
- Purpose of Bioavailability Studies 405
- Relative and Absolute Availability 406
- Practice Problem 407
- Methods for Assessing Bioavailability 407
- Bioequivalence Studies 413
- Design and Evaluation of Bioequivalence Studies 414
- Study Designs 417
- Crossover Study Designs 418
- Clinical Example 422
- Evaluation of the Data 423
- Bioequivalence Example 424
- Study Submission and Drug Review Process 427
- The Biopharmaceutics Classification System 431
- Generic Biologics (Biosimilar Drug Products) 433
- Clinical Significance of Bioequivalence Studies 435
- Special Concerns in Bioavailability and Bioequivalence Studies 436
- Generic Substitution 437
- Glossary 440
- Chapter Summary 443
- Learning Questions 443
- References 448
- Bibliography 449

17. Modified-Release Drug Products 469

- Conventional (Immediate-Release) and Modified-Release Drug Products 469
- Biopharmaceutic Factors 473
- Dosage form Selection 475
- Advantages and Disadvantages of Extended-Release Products 475
- Kinetics of Extended-Release Dosage Forms 476
- Pharmacokinetic Simulation of Extended-Release Products 478
- Clinical Examples 480
- Types of Extended-Release Products 480
- Considerations in the Evaluation of Modified-Release Products 495
- Evaluation of Modified-Release Products 497
- Evaluation of *In Vivo* Bioavailability Data 499
- Chapter Summary 501
- Learning Questions 501
- References 502
- Bibliography 503

18. Targeted Drug Delivery Systems and Biotechnological Products 505

- Biotechnology 506
- Drug Carriers and Targeting 514
- Targeted Drug Delivery 519
- Pharmacokinetics of Biopharmaceuticals 521
- Bioequivalence and Comparability of Biotechnology-Derived Drug Products 522
- Chapter Summary 523
- Learning Questions 524
- References 524
- Bibliography 525

19. Relationship Between Pharmacokinetics and Pharmacodynamics 527

- Pharmacodynamics and Pharmacokinetics 527
- Relationship of Dose to Pharmacologic Effect 534
- Relationship Between Dose and Duration of Activity (t$_{eff}$), Single IV Bolus Injection 536
- Practice Problem 536
- Effect of Both Dose and Elimination Half-Life on the Duration of Activity 537
- Effect of Elimination Half-Life on Duration of Activity 537
- Clinical Examples 539
- Rate of Drug Absorption and Pharmacodynamic Response 541
- Drug Tolerance and Physical Dependency 542
- Hypersensitivity and Adverse Response 543
Preface

The publication of this sixth edition of *Applied Biopharmaceutics and Pharmacokinetics* represents over 30 years in print. We are grateful to our readers for their loyalty and helpful suggestions throughout the years. As with the previous editions, we want to continue to maintain our original scope and objectives.

This text integrates basic scientific principles with drug product development and clinical pharmacy practice.

The major objective is to provide the reader with a basic and practical understanding of the principles of biopharmaceutics and pharmacokinetics that can be applied to drug product development and to drug therapy. This revised and updated edition of the text remains unique in teaching basic concepts that may be applied to understanding complex issues associated with *in vivo* drug delivery that are essential for safe and efficacious drug therapy.

The primary audience is pharmacy students enrolled in pharmaceutical science courses in pharmacokinetics and biopharmaceutics. This text fulfills course work offered in separate or combined courses in these subjects. Secondary audiences for this textbook are research and development scientists in pharmacuetics, biopharmaceutics, and pharmacokinetics.

There are many improvements in this edition.

- **Chapter Objectives** are added at the beginning of each chapter
- **Chapter Summary** at the end of each chapter.
- **Frequently Asked Questions** are seeded within each chapter to help the student focus on key concepts.
- Most chapters are revised to reflect our current understanding of drug disposition, pharmacodynamics, and drug therapy.
- The growing importance of drug transporters, CYP enzymes, and influence of pharmacogenetics on long-term drug response and other relevant topics have been updated to reflect current knowledge and application of pharmacokinetic/pharmacodynamics to drug therapy.
- **Chapter 15 is expanded and re-titled, Drug Product Performance, In Vivo: Bioavailability and Bioequivalence**, to reflect the consideration of bioequivalence as an *in vivo* measure of drug product performance and that bioequivalence is important in both brand and generic drug product development.
- **Chapter 16 is now titled, Impact of Drug Product Quality and Biopharmaceutics on Clinical Efficacy.** This chapter describes the types of safety and efficacy risks and various means for preventing them including the roles of drug product quality and drug product performance.
- In addition, the concept of quality-by-design (QbD) may be applied to improve critical quality attributes essential for drug product safety and efficacy
- **Practical examples and questions are included** to encourage students to apply the principles in patient care and drug consultation situations.
- **Active learning and outcome-based objectives are highlighted.**

Leon Shargel
Susanna Wu-Pong
Andrew B.C. Yu

xiii
Glossary

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B, C</td>
<td>Preexponential constants for three-compartment model equation</td>
</tr>
<tr>
<td>a, b, c</td>
<td>Exponents for three-compartment model equation</td>
</tr>
<tr>
<td>(\alpha, \beta, \gamma)</td>
<td>Exponents for three-compartment model equation (equivalent to (a, b, c) above)</td>
</tr>
<tr>
<td>(\lambda_1, \lambda_2, \lambda_3)</td>
<td>Exponents for three-compartment-type exponential equation (equivalent to (a, b, c) above; more terms may be added and indexed numerically with (\lambda) subscripts for multiexponential models)</td>
</tr>
<tr>
<td>Ab</td>
<td>Amount of drug in the body of time (t); see also (D_B)</td>
</tr>
<tr>
<td>(\text{Ab}^\infty)</td>
<td>Total amount of drug in the body</td>
</tr>
<tr>
<td>ABC</td>
<td>ABC transport protein</td>
</tr>
<tr>
<td>AE</td>
<td>Adverse event</td>
</tr>
<tr>
<td>ANDA</td>
<td>Abbreviated New Drug Application; see also NDA</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>API</td>
<td>Active pharmaceutical ingredient</td>
</tr>
<tr>
<td>AUC</td>
<td>Area under the plasma level–time curve</td>
</tr>
<tr>
<td>([\text{AUC}]_0)</td>
<td>Area under the plasma level–time curve extrapolated to infinite time</td>
</tr>
<tr>
<td>([\text{AUC}]_0^{t})</td>
<td>Area under the plasma level–time curve from (t = 0) to last measurable plasma drug concentration at time (t)</td>
</tr>
<tr>
<td>AUMC</td>
<td>Area under the (first) moment–time curve</td>
</tr>
<tr>
<td>BA</td>
<td>Bioavailability</td>
</tr>
<tr>
<td>BCS</td>
<td>Biopharmaceutics classification system</td>
</tr>
<tr>
<td>BDDCS</td>
<td>Drug disposition classification system</td>
</tr>
<tr>
<td>BE</td>
<td>Bioequivalence</td>
</tr>
<tr>
<td>BLA</td>
<td>Biologic license application</td>
</tr>
<tr>
<td>BM</td>
<td>Biomarker</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>BRCP</td>
<td>Breast cancer-resistance protein (an ABC transporter)</td>
</tr>
<tr>
<td>BUN</td>
<td>Blood urea nitrogen</td>
</tr>
<tr>
<td>C</td>
<td>Concentration (mass/volume)</td>
</tr>
<tr>
<td>(C_a)</td>
<td>Drug concentration in arterial plasma</td>
</tr>
<tr>
<td>(C_{av})</td>
<td>Average steady-state plasma drug concentration; see also</td>
</tr>
<tr>
<td>(C_c) or (C_p)</td>
<td>Concentration of drug in the central compartment or in plasma</td>
</tr>
<tr>
<td>(C_{Cr})</td>
<td>Serum creatinine concentration, usually expressed as mg%</td>
</tr>
<tr>
<td>CE</td>
<td>Clinical endpoint</td>
</tr>
<tr>
<td>(C_{eff})</td>
<td>Minimum effective drug concentration</td>
</tr>
<tr>
<td>(C_{GI})</td>
<td>Concentration of drug in gastrointestinal tract</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>(C_m)</td>
<td>Metabolite plasma concentration</td>
</tr>
<tr>
<td>(C_{\text{max}})</td>
<td>Maximum concentration of drug</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>C_{max}</td>
<td>Maximum steady-state drug concentration; see also C_{ssmax}</td>
</tr>
<tr>
<td>C_{min}</td>
<td>Minimum concentration of drug</td>
</tr>
<tr>
<td>C_{min}</td>
<td>Minimum steady-state drug concentration; see also C_{ssmin}</td>
</tr>
<tr>
<td>C_p</td>
<td>Concentration of drug in plasma</td>
</tr>
<tr>
<td>C_p^0</td>
<td>Concentration of drug in plasma at zero time ($t = 0$) (equivalent to C_0)</td>
</tr>
<tr>
<td>C_p'</td>
<td>Steady-state plasma drug concentration (equivalent to C_{ss})</td>
</tr>
<tr>
<td>$C_{p,u}$</td>
<td>Last measured plasma drug concentration</td>
</tr>
<tr>
<td>C_{ss}</td>
<td>Concentration of drug at steady state</td>
</tr>
<tr>
<td>C_{ssav}</td>
<td>Average concentration at steady state</td>
</tr>
<tr>
<td>C_{ssmax}</td>
<td>Maximum concentration at steady state</td>
</tr>
<tr>
<td>C_{ssmin}</td>
<td>Minimum concentration at steady state</td>
</tr>
<tr>
<td>C_t</td>
<td>Concentration of drug in tissue</td>
</tr>
<tr>
<td>cGMP</td>
<td>Current good manufacturing practices</td>
</tr>
<tr>
<td>CKD</td>
<td>Chronic kidney disease</td>
</tr>
<tr>
<td>Cl_{Cr}</td>
<td>Creatinine clearance</td>
</tr>
<tr>
<td>Cl_{D}</td>
<td>Dialysis clearance</td>
</tr>
<tr>
<td>Cl_h</td>
<td>Hepatic clearance</td>
</tr>
<tr>
<td>Cl_{int}</td>
<td>Intrinsic clearance</td>
</tr>
<tr>
<td>Cl_{int}^u</td>
<td>Intrinsic clearance (unbound or free drug)</td>
</tr>
<tr>
<td>Cl_{nr}</td>
<td>Nonrenal clearance</td>
</tr>
<tr>
<td>Cl_{R}</td>
<td>Renal clearance</td>
</tr>
<tr>
<td>Cl_{R}^u</td>
<td>Renal clearance of uremic patient</td>
</tr>
<tr>
<td>Cl_t</td>
<td>Total body clearance</td>
</tr>
<tr>
<td>COX-1</td>
<td>Cyclo-oxygenase-1</td>
</tr>
<tr>
<td>CRF</td>
<td>Case report form</td>
</tr>
<tr>
<td>CRFA</td>
<td>Cumulative relative fraction absorbed</td>
</tr>
<tr>
<td>C_v</td>
<td>Drug concentration in venous plasma</td>
</tr>
<tr>
<td>%CV</td>
<td>Percent coefficient of variation</td>
</tr>
<tr>
<td>CYP</td>
<td>Cytochrome P-450</td>
</tr>
<tr>
<td>D</td>
<td>Amount of drug (mass, eg, mg)</td>
</tr>
<tr>
<td>D_A</td>
<td>Amount of drug absorbed</td>
</tr>
<tr>
<td>D_B</td>
<td>Amount of drug in body</td>
</tr>
<tr>
<td>D_{L}</td>
<td>Loading (initial) dose</td>
</tr>
<tr>
<td>D_{m}</td>
<td>Maintenance dose</td>
</tr>
<tr>
<td>D_{GI}</td>
<td>Amount of drug in gastrointestinal tract</td>
</tr>
<tr>
<td>D_{N}</td>
<td>Normal dose</td>
</tr>
<tr>
<td>D_{P}</td>
<td>Drug in central compartment</td>
</tr>
<tr>
<td>D_{u}</td>
<td>Amount of drug in tissue</td>
</tr>
<tr>
<td>D_{0}</td>
<td>Dose of drug</td>
</tr>
<tr>
<td>D_0</td>
<td>Amount of drug at zero time ($t = 0$)</td>
</tr>
<tr>
<td>E</td>
<td>Pharmacologic effect</td>
</tr>
<tr>
<td>e</td>
<td>Intercept on y axis of graph relating pharmacologic response to log drug concentration</td>
</tr>
<tr>
<td>eGFR</td>
<td>Estimate of GFR based on an MDRD equation</td>
</tr>
<tr>
<td>E_{max}</td>
<td>Maximum pharmacologic effect</td>
</tr>
<tr>
<td>E_0</td>
<td>Pharmacologic effect at zero drug concentration</td>
</tr>
<tr>
<td>EC_{50}</td>
<td>Drug concentration that produces 50% maximum pharmacologic effect</td>
</tr>
<tr>
<td>ELS</td>
<td>Extended least square</td>
</tr>
<tr>
<td>ER</td>
<td>Extraction constant (equivalent to E_h); extraction ratio</td>
</tr>
<tr>
<td>F</td>
<td>Fraction of dose absorbed (bioavailability factor)</td>
</tr>
<tr>
<td>f</td>
<td>Fraction of dose remaining in the body</td>
</tr>
<tr>
<td>f_e</td>
<td>Fraction of unchanged drug excreted unchanged in urine</td>
</tr>
<tr>
<td>f_{u}</td>
<td>Unbound fraction of drug</td>
</tr>
<tr>
<td>$f(t)$</td>
<td>Function representing drug elimination over time (time is the independent variable)</td>
</tr>
<tr>
<td>$f'(t)$</td>
<td>Derivative of $f(t)$</td>
</tr>
<tr>
<td>GI</td>
<td>Gastrointestinal tract</td>
</tr>
<tr>
<td>GFR</td>
<td>Glomerular filtration rate</td>
</tr>
<tr>
<td>GI</td>
<td>Gastrointestinal tract</td>
</tr>
<tr>
<td>GMP</td>
<td>Good Manufacturing Practice</td>
</tr>
<tr>
<td>[I]</td>
<td>Inhibitor concentration in an enzymatic reaction</td>
</tr>
</tbody>
</table>
IBW Ideal body weight
IVIVC In vitro–in vivo correlation
k Overall drug elimination rate constant \((k = k_e + k_m)\); first-order rate constant, similar to \(k_{el}\)
\(K_a\) Association binding constant
\(k_a\) First-order absorption rate constant
\(K_d\) Dissociation binding constant
\(k_e\) Excretion rate constant (first order)
\(k_{el}\) Excretion rate constant (first order)
\(k_{e0}\) Transfer rate constant out of the effect compartment
\(k_i\) Inhibition constant: \(= k_f/k_p\)
\(K_M\) Michaelis–Menten constant
\(k_m\) Metabolism rate constant (first order)
\(k_N\) Normal elimination rate constant (first order)
\(k_{NR}\) Nonrenal elimination constant of normal patient
\(k_{NR}^U\) Renal elimination constant of uremic patient
\(k_u\) Uremic elimination rate constant (first order)
\(k_{on}\) First-order association rate constant
\(k_{off}\) First-order dissociation constant
\(k_0\) Zero-order absorption rate constant
\(k_{le}\) Transfer rate constant from the central to the effect compartment
\(k_{21}\) Transfer rate constant (from the tissue to the central compartment); first-order transfer rate constant from compartment 2 to compartment 1
LBW Lean body weight
\(m\) Slope (also slope of \(E\) versus \(\log C\))
\(M_u\) Amount of metabolite excreted in urine
mAbs Monoclonal antibodies
MAT Mean absorption time
MDR1 p-Glycoprotein, ABCB1
MDRD MDRD equation used to estimate of GFR
MDT Mean dissolution time
MEC Minimum effective concentration
miRNA MicroRNA
MLP Maximum life-span potential
MRP Multidrug resistance-associated proteins
MRT Mean residence time
\(MRT_c\) Mean residence time from the central compartment
\(MRT_p\) Mean residence time from the peripheral compartment
\(MRT_t\) Mean residence time from the tissue compartment (same as \(MRT_p\))
MTC Minimum toxic concentration
\(\mu_0\) Area under the zero moment curve (same as AUC)
\(\mu_1\) Area under the first moment curve (same as AUMC)
NDA New Drug Application
NONMEN Nonlinear mixed-effect model
NTI Narrow therapeutic index; see also critical dose drug
OTC Over-the-counter drugs
OATP Organic anion transporting polypeptide
OAT Organic anion transporter
\(P\) Amount of protein
PD Pharmacodynamics
PEG Polyethylene glycol
P-gp p-Glycoprotein, MDR1, ABCB1
PGt Pharmacogenetics
PK Pharmacokinetics
PPI Patient package insert
\(Q\) Blood flow
QA Quality assurance
QBd Quality by design
QC Quality control
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Infusion rate; ratio of C_{max} after n dose to C_{max} after one dose (see Chapter 8) (accumulation ratio); pharmacologic response (see Chapter 19)</td>
</tr>
<tr>
<td>r</td>
<td>Ratio of mole of drug bound to total moles of protein</td>
</tr>
<tr>
<td>R_{max}</td>
<td>Maximum pharmacologic response</td>
</tr>
<tr>
<td>RLD</td>
<td>Reference-listed drug</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RNAi</td>
<td>RNA interference</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>siRNA</td>
<td>Small inhibitory RNA</td>
</tr>
<tr>
<td>SNP</td>
<td>Single-nucleotide polymorphism</td>
</tr>
<tr>
<td>t</td>
<td>Time (hours or minutes); denotes tissue when used as a subscript</td>
</tr>
<tr>
<td>t_{eff}</td>
<td>Duration of pharmacologic response to drug</td>
</tr>
<tr>
<td>t_{inf}</td>
<td>Infusion period</td>
</tr>
<tr>
<td>t_{lag}</td>
<td>Lag time</td>
</tr>
<tr>
<td>t_{max}</td>
<td>Time of occurrence for maximum (peak) drug concentration</td>
</tr>
<tr>
<td>t_0</td>
<td>Initial or zero time</td>
</tr>
<tr>
<td>$t_{1/2}$</td>
<td>Half-life</td>
</tr>
<tr>
<td>τ</td>
<td>Time interval between doses</td>
</tr>
<tr>
<td>USP</td>
<td>United States Pharmacopeia</td>
</tr>
<tr>
<td>V</td>
<td>Volume (L or mL)</td>
</tr>
<tr>
<td>v</td>
<td>Velocity</td>
</tr>
<tr>
<td>V_{app}</td>
<td>Apparent volume of distribution (binding)</td>
</tr>
<tr>
<td>V_C</td>
<td>Volume of central compartment</td>
</tr>
<tr>
<td>V_D</td>
<td>Volume of distribution</td>
</tr>
<tr>
<td>V_e</td>
<td>Volume of the effect compartment</td>
</tr>
<tr>
<td>V_i</td>
<td>V_i and V are the reaction velocity with and without inhibitor, respectively</td>
</tr>
<tr>
<td>V_{max}</td>
<td>Maximum metabolic rate</td>
</tr>
<tr>
<td>V_p</td>
<td>Volume of plasma (central compartment)</td>
</tr>
<tr>
<td>V_t</td>
<td>Volume of tissue compartment</td>
</tr>
<tr>
<td>$(V_D)_{\text{exp}}$</td>
<td>Extrapolated volume of distribution</td>
</tr>
<tr>
<td>$(V_D){\text{SS}}$ or $V{\text{DSS}}$</td>
<td>Steady-state volume of distribution</td>
</tr>
</tbody>
</table>